Сварочная дуга: строение, температура, классификация и виды дуги

Содержание

Как происходит формирование дугового разряда

Дуга  производится пробоем межэлектродного промежутка между неподвижным и подвижным электродами (см. рис. 1). В процессе ионизации среды между электронами, плотность их потока по длине возрастает, а диэлектрические свойства среды остаются постоянными. Простейший способ ионизации столба  – увеличение разности потенциалов между электродами при одновременном росте тока и температуры межэлектродного промежутка.

Сварочная дуга

Эти факторы, действующие совместно, ионизируют среду, превращая её из диэлектрика в проводник. Таким образом, в течение короткого времени поток электронов становится непрерывным, поддерживая в промежутке ток короткого замыкания.

Определение стабильности существования процесса производится следующими факторами:

  1. Диэлектрической прочностью среды.
  2. Степенью ионизации, т.е. количеством электронов, которые находятся в ионизированном потоке
  3. Длиной: при увеличении данного параметра сопротивление дуги возрастает.
  4. Поперечным сечением разряда, чем оно меньше, тем выше сопротивление дуги.
  5. Необходимым временем разделения: с его увеличением мощность снижается.

В процессе возбуждения разряда дальнейшим условием стабильности существования является требование правильно настроить все вышеперечисленных параметров. Такие пределы классифицируются по назначению устройства, использующего сварочную дугу – для целей сварки, наплавки или размерной обработки требования будут различными.

Схема сварочной дуги        
Рисунок 1 — Схема сварочной дуги

Классификация сварочной дуги

Электрические свойства сварочной дуги могут отличаться в зависимости от того, с какого источника подается электричество. Для ее создания используют инверторы, генераторы, выпрямители, трансформаторы и прочую технику. Выделяют два основных типа получаемой дуги:

  • В первом случае наблюдаются статичные параметры. Они не меняются в течение длительного времени использования. Допустимы минимальные отклонения, но они не являются существенными и не влияют на характеристики накладываемого шва.
  • Во втором случае получается динамические параметры. Это переходные, когда параметры в системе изменяют и из-за них меняется характеристика дуги.

Классифицировать дугу можно еще по другим признакам:

  • Открытая – горение происходит в воздухе;
  • Закрытая – горение происходит во флюсе;
  • С подачей защитных газов – в дугу поставляются газы с защитными функциями.

Строение сварочной дуги

Сварочная дуга представляет собой явление, в котором можно выделить несколько основных областей, определяющих ее строение. Выделяют три основные области:

  • Столб дуги – это основная доля всего дугового промежутка. В него входят положительные и отрицательные ионы. Столб обладает нейтральным зарядом, так как положительные и отрицательные элементы здесь находятся в одинаковом количестве.
  • Катодная область – это источник электронов, которые ионизируют газы, находящиеся рядом. Здесь очень высокое напряжение. Выделившиеся электроды удаляются из данной области под действием электрического поля. Это поле притягивает положительные ионы. Ионов здесь всегда больше, чем электронов.
  • Анодная область – это самая широкая область из всей дуги. Ток анода условно считают сугубо электронным, но на самом деле здесь присутствуют и ионы, пусть и в незначительном количестве. Здесь создается отрицательный объемный заряд. В анодной области присутствует низкий уровень напряжения.

Во время горения дуги на электроде можно выделить несколько активных пятен. Они разделяются по степени нагревания, так как есть несколько зон нагретых по-разному, и они наблюдаются практически при каждом процессе сваривания. Если пятно находится на аноде, то его называют анодным, а если на катоде, то катодным.

Свойства дуги

Дуга обладает очень ярким светом, который оказывается вредным для глаз и может привести к их ожогу во время своего горения. Помимо видимого спектра, она излучает еще ультрафиолетовые и инфракрасные лучи. Если расстояние между электродом и заготовкой слишком большое, то дуга тухнет. Она обладает очень высокой силой тока и температурой, которая увеличивается, если размер столба будет расти. При подаче плотного воздуха или газа под давлением, а также масла, дуга может потухнуть.

Характеристики

Вольтамперная характеристика сварочной дуги зависит от напряжения и сварочного тока, которые формируются источником питания. При изменении какого-либо из параметров меняются и другие значения данного явления. Существует три основных разновидности характеристик:

  • Жесткая;
  • Возрастающая;
  • Падающая.

Падающая характеристика получается, когда производится сварка в обыкновенных условиях в среде защитных газов. Она характеризуется относительно небольшими значениями сварочного тока. Если сила тока будет повышаться, то возрастает и уровень процесса ионизации. Дуга увеличивает площадь своего сечения, а также температура горения.

Если сила тока находится от 80 до 300 А, то дуга получает жесткую характеристику.»

Здесь характерны низкие значения напряжения. Площадь сечения напрямую зависит от силы тока, так что можно легко регулировать ширину свариваемого шва.

Возрастающая характеристика присущая наиболее высоким значениям сварочного тока, более 300 А. Напряжение может увеличиваться тогда, когда скапливается большое количество зарядов на электроде. Это де приводит к падению напряжения на катоде.

Область применения

Сварочная дуга применяется в обыкновенной ручной дуговой сварке, которая на данный момент является наиболее простым методом стандартного сваривания. Здесь она защищается обмазкой электродов, которая при сгорании образует газовые испарения, препятствующие проникновению посторонних элементов внутрь ванны расплавленного металла.

Также дуга используется в полуавтоматической газовой сварке. Здесь используется сварочная электрическая дуга, которая подается не на обыкновенный электрод, а на неплавкий вольфрамовый. Соответственно, расплавления металла идет не с одного из выходов, как это было в предыдущем методе. На дугу подается сварочная проволока, которая расплавляет материал.

Еще одним вариантом являются автоматы. Они проще в создании, чем газовые, так что получили широкое распространение в промышленности. Они могут быть как с плавкими, так и с неплавкими электродами. С одной установки может зажигаться несколько электродуг, если они имеют многопостовую конструкцию.

В ручной дуговой сварке идет работа с обыкновенными конструкционными сталями. Иногда пробуют сваривать цветные металлы, но это сложно и не всегда успешно. Лучше дуга проявляет себя при защите газа. Она оказывается более стабильной при горении, а также позволяет создавать качественные надежные швы.

Чем определяется мощность сварочной дуги

На мощностные параметры электродуги влияют несколько факторов:

  • напряжение, возрастание приводит к увеличению мощности только в небольшом диапазоне, существуют ограничения по размеру электрода;
  • сила тока, большой ампераж обеспечивает стабильное горение;
  • величина напряжения плазмы, пропорциональна мощности.

Длиной сварочной дуги называют расстояние от сварного кратера до кончика электрода. От этой величины зависит объем выделившегося тепла.

По мощности сварочной дуги определяют скорость плавления металла. От этой характеристики зависит время выполнения сварочных работ. Регулировка силы тока производится для корректировки температуры в рабочей зоне, даже на длинном столбе электродуга не будет затухать при большом ампераже. Напряжение редко изменяют в процессе сварки.

При постоянном токе

Для лучшего восприятия информации рассмотрим свойства дуги на примере сварочных процессов. Источники питания сварочной дуги могут различаться по типу тока. При постоянном токе выделяют три основные зоны:

  • анодная область;
  • катодная область;
  • столб дуги.

Зоны анода и катода, которые поддаются наиболее интенсивному температурному воздействию, называют активными пятнами. Через них проходит весь разряд дуги. При сварочном токе в 300 А размер катодного пятна в два раза меньше анодного. Распределение выделения тепловой энергии выглядит следующим образом:

  • анодная область – 43 %;
  • катодная область – 36 %;
  • столб дуги – 21 %.

При этом наибольшей температурой отличается столб дуги. При сварке неплавящимися электродом температура столба может быть в диапазоне 5000-6000 Сº.

Читайте также:  СВАРКА ТОНКОГО МЕТАЛЛА инвертором и электродом [технология]

Вольт амперная характеристика

График, выражающий, как напряжение зависит от изменения тока, называют вольтамперной характеристикой дуги.

В условиях неизменной длины столба и постепенном росте тока график разделяется на три основные зоны. В первой, называемой «нисходящая», с ростом тока напряжение немного снижается. Эта зона соответствует процессам, происходящим при ручной сварке. Во второй – при росте тока напряжение остается стабильным. Эта часть характеристики применяется при полуавтоматической сварке с применением механической подачи сварочной проволоки.

И наконец, третья область, именуемая «восходящая» используется при автоматической сварке, в ней напряжение растет с повышением тока.

Дуговая сварка плавящимся электродом

При ручной сварке начальные значения на кривой соответствуют режиму холостого хода источника. Когда сварщик разжигает дугу, напряжение снижается вплоть до достижения участка стабилизации, такое напряжение сохраняется во время всей операции.

Виды сварочной дуги

Сварочная дуга с неконтролируемым поперечным сечением, предназначенным для соединения нескольких токопроводящих материалов между собой, использует  два разных типа сварочных аппаратов  – с расходуемыми и нерасходуемыми электродами. К первому типу относятся:

  1. Сварка металла газом: инертным (MIG по международной классификации) или активным (MAG, но чаще используется буквосочетание GMAW – сварка с применением защитного газа, предохраняющего основной металл от активного окисления).
  2. Экранированная дуговая сварка (MMA). Представляет собой процесс ручной электродуговой сварки, при котором разряд возбуждается между металлическим стержнем (электрод покрыт флюсом или содержит его) и обрабатываемой деталью. Поверхность стержня и заготовки плавятся, образуя сварочную ванну. При одновременном плавлении флюсового покрытия на стержне образуются газ и шлак, который впоследствии защищает сварочную ванну от окружающей атмосферы. Это – универсальный процесс, идеально подходящий для соединения черных и цветных металлов с различной толщиной и при всех положениях заготовки.
  3. Дуговая сварка порошковой проволокой (FCAW) использует электрод с сердечником из флюсового сердечника с непрерывной подачей и источник постоянного напряжения, обеспечивающий постоянную длину разряда. В этом процессе используется либо защитный газ, либо газ, образующийся при термическом испарении флюса с целью защиты зоны шва от загрязнений.
  4. Сварка под флюсом (SAW). Часто применяемый процесс с расходуемым электродом (который непрерывно подаётся к зоне расплава) и защитным слоем из плавкого флюса. Флюс становится токопроводящим при расплавлении, обеспечивая току лёгкий путь между деталью и электродом. Поток помогает также предотвратить разбрызгивание металла и искры, поскольку подавляет пары и ультрафиолетовое излучение.
  5. Электрошлаковая сварка (ESW). Вертикальный процесс, используемый для сварки толстых листов (более 25 мм) за один проход. Сварочная дуга при этом способе зажигания возбуждается ещё до того, как добавление флюса погасит её. В результате плавления флюса, когда расходные материалы для проволоки подаются в расплавленную ванну, на поверхности ванны образуется расплавленный шлак. Тепло, необходимое для плавления торцов сварочной проволоки и заготовки, генерируется за счет сопротивления расплавленного шлака прохождению электрического тока. Для предотвращения вытеканию расплавленного шлака, в конструкции предусматриваются два подвижных медных башмака, которые постоянно охлаждаются водой.

Ко второму типу относят сварку неплавящимся вольфрамовым электродом (TIG), который используется для возникновения дугового разряда. Защита сварного шва и ванны  состоит в применении защитного инертного газа (чаще – аргона).

Сварочная дуга может легко управляться, для этого достаточно ограничить размеры её поперечного сечения.

С этой целью можно применять, например, концентрированный поток любой рабочей среды, обладающий минимальными электроизоляционными свойствами (например, масло или керосин).  При условии контролируемого перемещения по поверхности такая сжатая дуга обладает особенностью высокопроизводительной размерной обработки металлов (см. рис.2).

Размерная обработка металлов дуговым разрядом
Рисунок 2 – Размерная обработка металлов дуговым разрядом: 1 – Дуговой разряд; 2 – Поперечный поток рабочей среды; 3 —  Верхний электрод; 4 – Источник возбуждения дугового разряда; 5 – Гидропривод; 6 – Бак с рабочей средой; 7 – Нижний электрод

Подбор электродов

Технология ручной дуговой сварки покрытыми электродами требует применение качественного присадочного материала, это является важным условием. От выбора электродов зависит качество сварного шва. Стержни подбираются в соответствии с видом металла, который будет подвергаться свариванию.

Фото: электроды для дуговой сварки

При проведении ручной дуговой наплавки покрытыми электродами стоит учитывать свойства стержней, которые зависят от типа покрытия. Электроды, которые применяются для РДС, обычно имеют рутиловое или основное покрытие.

Данные электроды обладают важными особенностями:

  1. Электроды с рутиловым покрытием часто применяют новички. Это связано с тем, что при их применении намного легче можно разжечь и вести дугу.
  2. В продаже можно встретить огромный выбор электродов с рутиловым покрытием – бюджетные и дорогие марки. Опытные сварщики не рекомендуют применять для сварки дома слишком дорогие виды, потому что они не смогут до конца раскрыть потенциал.
  3. Рутиловые стержни имеют существенный недостаток – при их использовании в сварном шве наблюдается повышенное содержание водорода, это может сильно ухудшить качество соединения.
  4. При использовании электродов со рутиловым покрытием предотвращает сильное разбрызгивание металла во время расплавления.
  5. Стержни с основным покрытием часто выбирают профессиональные сварщики с большим опытом. С ними достаточно тяжело работать, потому что дуга разжигается достаточно тяжело, и в процесс сварочного процесса она постоянно должна быть короткой.
  6. Применение электродов с основным покрытием позволяют получить отличное качество сварного шва.
  7. Стержни, имеющие основное покрытие, прекрасно подходят для сваривания тонкого металла.

Электроды для РДС и других видов дуговой сварки должны подбираться в зависимости от экономических факторов. Ручной дуговой сварочный процесс достаточно медленный, поэтому рекомендуется знать скорость наплавки стержня, чтобы установить, сколько времени и электродов потребуется на формирование сварного шва.

Обратите внимание! В продаже встречаются высокопроизводительные швы, которые повышают производительность рабочего процесса. Однако они подходят для создания горизонтальных швов.

Влияние на дугу магнитных полей

При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

— столб сварочной дуги резко откланяется от нормального положения;
— дуга горит неустойчиво, часто обрывается;
— изменяется звук горения дуги — появляются хлопки.

Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

Сварочная дуга без отклонения

Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

Отклонение сварочной дуги

Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

Влияние феромагнитных масс на дугу

Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

Уменьшить влияние магнитного дутья на сварочный процесс можно:

— выполнением сварки короткой дугой;
— наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья;
— подведением токоподвода ближе к дуге.

Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

Строение сварочной дуги: катодное пятно, столб дуги, анодное пятно

Катодное пятно является источником и местом выхода электронов. Этот участок электрической дуги разогревается до температуры 2400-2600°C при использовании покрытых электродов, а количество тепла выделенного тепла на этом участке равняется 38% от общего. На этом участке дуги теряется 12-17 В напряжения сосредоточенных на разгон электродов и их эмиссию.

Столб дуги в отличии от катодного и анодного пятна является нейтральным участком дуги, где одновременно находится одинаковое количество позитивно и негативного заряженных частиц. Столб дуги выделяет приблизительно 20% об общего количества тепла. Потеря напряжения на этом участке сварочной дуги зависит от ее длины и становит 2-12 В. Температура столба дуги самая высокая 6000-8000°C.

Читайте также:  Магнитопорошковый метод неразрушающего контроля — особенности, ГОСТ

Анодное пятно — место входа электродов в сварочную цепь с дуги. Температура 2400-2600°C, а количество выделяемого тепла 42% от общего. Спад напряжения 2-11 В. Анодное пятно под воздействием постоянной бомбардировки имеет вогнутую форму, которую называют кратером.

При сварке на постоянном токе различают прямую и обратную полярность. Меняют полярность в зависимости от вида свариваемого материала. Если требуется больший нагрев металла и глубина проплавления необходимо установить анод на изделие, где будет выделяться больше тепла — прямая полярность. При сварке на обратной полярности анод и катод меняются местами, поэтому на изделии выделяется меньше тепла.

Для сварки дугой переменного тока характерно менять полярность с частотой 50 Гц, поэтому на электроде и изделии выделяется одинаковое количество тепла. При сварке на переменном токе дуга горит менее стойко и усиливается разбрызгивание электродного металла.

Природа возникновения явления

Процесс формирования дуги выглядит следующим образом:

  1. Сварщик на долю секунды касается электродом металлической заготовки.
  2. В момент контакта происходит короткое замыкание, сопровождающееся протеканием тока большой силы и, как следствие, мощным выделением тепла.
  3. Металл в точке прикосновения плавится. Он становится вязким, тягучим.
  4. В момент отрыва расходника от заготовки за ним тянется капля расплава.
  5. Удлиняясь, она утоньшается с образованием т.н. шейки. В какой-то момент та испаряется и превращается в облако заряженных частиц. Одновременно вследствие высокой температуры в данной зоне ионизируется воздух или защитный газ.
  6. Под действием электрического поля носители отрицательного заряда устремляются к аноду, положительного – к катоду. Начинается процесс протекания тока в плазме.

Природа возникновения
В момент контакта происходит короткое замыкание, металл в точке прикосновения плавится.

Каждый этап длится миллисекунды, разряд возникает практически мгновенно. Далее ток поддерживается эмиссией электронов на катоде. По пути к аноду они ионизируют газ и пары металла, увеличивая число свободных носителей заряда.

Современные сварочные аппараты оснащаются генератором высокочастотных колебаний (осциллятором). Это устройство позволяет возбуждать дугу бесконтактным способом.

Среда, в которой создается сварочная дуга

Все вещества в природе состоят из молекул, а молекулы — из атомов. С другой стороны, атомы представляют собой сложные частицы, состоящие из ядра, заряженного положительным электрическим зарядом. Другие мелкие частицы, заряженные отрицательным электрическим зарядом, называемые электронами, группируются вокруг ядра. В нормальном состоянии вещества электрические заряды электронов и ядра уравновешены, и вещество не пропускает электрический ток. Но если под действием внешних причин, таких как нагрев или действие электрического поля, один или несколько электронов высвобождаются из атома или молекулы воздуха. Это равновесие нарушается, и все его частицы делятся на две группы: одни заряжены положительно, другие — отрицательно. Этот процесс являетсяназывается ионизацией, а частицы, заряженные положительным или отрицательным зарядом, — ионами. Ионы в газах могут использоваться в качестве молекул соответствующего газа, а также твердых или жидких тел, которые соприкасаются с газом, в котором происходит ионизация. Это вкратце середина, в которой создается электросварочная дуга.

Как регулировать длину дуги

От этого параметра зависят не только электрические величины, но и качество сварки. Дугу стремятся делать как можно более короткой, в пределах 3-4 мм.

При большей длине наблюдаются следующие негативные явления:

  1. Капли расплавленного металла с электрода на пути к сварочной ванне успевают вобрать в себя из воздуха много кислорода и азота. В результате шов теряет прочность, пластичность и ударную вязкость.
  2. Разряд перемещается по поверхности заготовки (блуждание), вследствие чего тепло распределяется по относительно большой площади. Глубина провара уменьшается; капли расплава с расходника, попадая на непрогретый металл, не сливаются с ним, а отскакивают.

Короткая дуга издает сухой треск, напоминающий шипение масла на горячей сковороде.

Длина дуги
При большой длине сварочной дуги наблюдаются негативные явления.

Выполненный ей шов выглядит аккуратным и имеет следующие признаки:

  1. Правильную форму.
  2. Гладкую выпуклую поверхность.

Шов, выполненный длинной дугой, имеет неровные очертания, вдоль него налипают капли расплавленного металла.

Плавящийся электрод в процессе сварки уменьшается. Поэтому его постепенно приближают к заготовке, чтобы длина разряда оставалась постоянной.

Особенности

Это физическое явление имеет индивидуальные отличия:

  1. В столбе плотность достигает 10—20 А/мм2.
  2. Электрическое поле распределено неравномерно — малые величины в середине столба и огромные ближе к периферии.
  3. Из-за ее свойств в виде большой плотности газов в дуге концентрируется высокая температура, чем меньше длина столба, тем быстрее она достигает максимума.
  4. С помощью регулировки длины дуги получают и различия вольт-амперных характеристик.

Сварка заслуженно признается надежным способом соединения различных конструкций, не имеющей альтернативы. Она используется во всех сферах промышленности, но для получения высокого качества соединений нужно учитывать все параметры, влияющие на прочность и пластичность шва.

Технология электродуговой сварки безнапорных трубопроводов и труб водопровода

При электродуговой технологии работы с трубами нельзя забывать о таких тонкостях:

  1. Аппарат включают, когда электрод только прикоснулся к поверхности трубы.
  2. Нужно непрерывно следить за длиной электрической дуги, ведь от нее зависит размер газовой оболочки, препятствующей попаданию воздуха в зону работы.
  3. Электрод плавно передвигают в зоне сварочных работ, чтобы расплавленный металл с электрода равномерно распределялся по шву.
  4. Толщина наплавления металла трубных элементов зависит от легких скользящих движений сварщика из стороны в сторону.
  5. При работе с толстостенными трубами большого диаметра делают внутренние и внешние сварные швы.

Технология электродуговой сварки

Во избежание разного рода дефектов необходимо плотно соединить элементы трубопровода между собой. Второе важное требование: нужно довести нагревом поверхность металла до светло-красного оттенка, и, безусловно, сила тока должны быть увеличена на 10–20 %. При соблюдении этих требований вы получите вязкий и пластичный сварной шов, надежно герметизирующий стык между трубами даже в условиях сильных морозов.

При отрицательных температурах сварочная зона быстро охлаждается, затрудняется удаление раскаленных газов из расплавленного металла. В результате чего трубная сталь приобретает хрупкость, а значит, возрастает риск ее термического разрушения, появления горячих трещин, отходящих от сварного шва, закалочных структур.

Что собой представляет сварочная дуга?

Сварочная дуга представляет собой электрический разряд с высокой мощностью и большой длительностью, проходящий между электродами под напряжением в газовых смесях.
Характеризуется рассматриваемый элемент для сварки повышенной температурой, плотностью тока, за счет чего механизм может расплавить любой металл с температурой плавления больше, чем 3000 градусов.

Кроме этого данная деталь в сварочном инструменте выступает газовым проводником, c помощью которого преобразовывается тепловая энергия из электрической. Электрический заряд, в свою очередь, – это прохождение тока под напряжением сквозь газы.


Способы зажигания сварочной дуги.
Можно выделить несколько основных типов электрического заряда, при помощи которого происходит процесс горения:

  1. Тлеющий. Можно возникнуть из-за низкого давления. Используется для процесса освещения в люминесцентной лампе и плазменного экрана.
  2. Искровой. Появляется, после того, как давление сравняется с атмосферным. Имеет прерывистую форму. Механизм действия можно сравнить с молнией. Эксплуатируется для розжига двигателя внутреннего сгорания.
  3. Дуговой. Используется во время сварочных работ либо для простого освещения. Имеет непрерывистую форму, появляется за счет атмосферного давления.
  4. Коронный. Появляется в случае, если электрод структурно шероховатый, неоднородный, дополнительного электрода нет, иными словами появляется струйка. Используются для очистки газовой смеси от грязи и других инородных предметов.

Как выглядит сварочная дуга

Нагретая плазма излучает 3 вида электромагнитных волн:

  • видимый свет;
  • инфракрасные;
  • ультрафиолетовые.

Визуально она напоминает разряд молнии.

Анодное и катодное пятна видимого света не излучают.

Как возникает электрическая сварочная дуга

Как и любой электрический разряд, сварочная электродуга появляется при замыкании цепи. Возникновение тока при касании электрода к свариваемому металлу приводит к выработке большого количества тепла. В точке замыкания появляется расплав, он тянется за кончиком электрода, образуется шейка, которая мгновенно распыляется из-за сильного тока. Происходит ионизация молекул воздуха и защитного облака, они переносят поток электронов.

Направленность потока зависит от рода тока. Дуга разжигается на постоянном токе обратной и прямой полярности, на переменном. Частота угасания и розжига электродуги зависит от параметров рабочего тока.

Строение и температура сварочной дуги

Разогреть металл до температуры плавления за очень короткое время можно, но для этого потребуется мощная электрическая дуга. Основные ее характеристики – вольтаж, ампераж и плотность потока заряженных частиц. Как электротехническое явление дуговой столб представляет собой проводник между полярными полюсами, состоящий из газовой среды. При этом он обладает большим сопротивлением и способен светиться.

Читайте также:  Сварка полиэтиленовой пленки в домашних условиях

Детальный анализ построения дуги помогает разобраться с течением температурного воздействия на металл. Сравнительно небольшая длина электрической дуг – 5 см, которые состоят из трех зон:

  • собственно, столб – это видимая светящаяся часть;
  • катодная – 1 микрон;
  • анодная – 10 микрон.

Поток свободных электронов определяет температуру сварочной дуги. Они формируются на катоде, который нагревается до 38% от температуры плазмы. В газовой среде отрицательные частички – электроны двигаются по направлению к аноду, в то время как положительные элементы направляются к катоду. Столб лишен какого-либо заряда и все время остается нейтральным.

Температура частиц внутри достигает 10 000 градусов Цельсия. Воздействуя на металл, они разогревают его до 2350 градусов. Точка входа электронов среди специалистов называется анодным пятном. По сравнению с катодным оно имеет температуру на 6% выше. Поскольку плазма генерирует ультрафиолетовые, световые и инфракрасные волны, то она находится в видимом для человека спектре. Но важно учесть, что данные волны вредны для человека: и для кожи, и для глаз. Поэтому для сварщиков были разработаны специальные средства защиты.

Что такое дуга в сварке — Металлы и их обработка

Какая область отсутствует в сварочной дуге?

Уже более полувека сварка является одним из важнейших ремесел для человека. Благодаря сварочному аппарату строятся космические корабли, функционируют заводы, и для многих умельцев сварка превратилась в хобби. Но даже самый технологичный сварочный аппарат не принесет желаемого результата без стабильной сварочной электрической дуги и ее качественных характеристик.

Электрическая сварочная дуга позволяет надежно сварить даже самые сложные конструкции из металла. Чтобы получить качественные сварные швы нужно учесть все ее характеристики, знать особенности и строение дуги. Дополнительно важно учитывать температуру и напряжение дуги при ручной дуговой сварке. Из этой статьи вы узнаете, что такое сварочная дуга и сущность протекающих в ней процессов, научитесь применять полученные знания на практике.

Строение и главные условия возбуждения разряда

В области разряда дуга представляет собой  проводник электрического тока, который протекает через ионизированный газовый столб. Для стабильного существования этого столба необходима весьма значительная разность потенциалов, при которой в зоне дугового разряда формируются две зоны — отрицательно заряженный катод и положительно заряженный анод. Полярность протекания тока при этом значения не имеет, поскольку разряд может возбуждаться и при  прямой, и при обратной полярности.

Для сварки и размерной обработки твёрдых сплавов используется преимущественно прямая полярность, а при размерной обработке металлов – обратная. Зависимость между током и напряжением называется вольт-амперной характеристикой  (ВАХ) сварочной дуги. У каждой модели сварочного аппарата характеристики ВАХ различны.

Строение предполагает, что между катодным и анодным пятном  располагается зона плазменного столба с повышенной яркостью, что обусловлено высокими скоростями перемещения электронов.

При сварке дуга не только обеспечивает тепло, необходимое для плавления электрода и основного металла, но — при определенных условиях – является средством транспортировки расплавленного металла от электрода к заготовке. Основных способов перемещения расплава может быть два:

  • Механическое натяжение, когда преобладающая часть капель расплавленного металла касается ванны и втягивается в нее силами поверхностного натяжения;
  • Электродинамические силы, когда выброс расплавленного металла происходит во время его выталкивания из сварочной ванны

При простом соединении холодного электрода с устройством, генерирующим большие токи, ионизированный канал отсутствует.  Тогда дуга зажигается плохо. Поджиг дуги в сварочных инверторах вызывается либо подачей начального напряжения, достаточно высокого, чтобы вызвать разряд, либо прикосновением электрода к заготовке для создания короткого замыкания.

Во втором случае говорят о явлении форсажа дуги, когда область контакта быстро и сильно нагревается. В результате инициируется поток ионизированного газа, после чего контакт ликвидируется, а  горение продолжается «естественным» образом.

Дуговая сварка может выполняться постоянным или переменным током. Выбор жёсткости схемы и её вида зависит от процесса, типа электрода, атмосферы дуги и свариваемого металла.

Сварочная дуга при ручной электродуговой сварке

При ручной дуговой сварке для зажигания дуги конец электрода касается металла в точке, где начинается сварка. Таким образом происходит короткое замыкание электросварочной дуги. Согласно закону Джоуля-Ленца, в точке контакта выделяется определенное количество тепла, которое заставляет тонкий металлический слой частично плавиться и закипать на кончике электрода. В результате воздушный зазор насыщается парами металла. При дальнейшем быстром извлечении острия электрода на высоту 2 — 3 мм из-за значительной ионизации зазора паров металла образуется сварочная дуга. Сфера пламени вокруг дуги представляет собой нагретую газовую смесь продуктов реакции между паром электрода и кислородом воздуха.

Для поддержания горения дуги длина 2-3 мм должна быть постоянной. Это достигается постепенным опусканием кончика электрода по мере его плавления.

Строение и зона анодного пятна

В структуре дуги различают 3 участка:

  1. Катодное пятно. Является местом разгона и эмиссии электронов, имеет отрицательный заряд. Размер этой зоны – примерно 1 мкм (0,001 мм). Здесь выделяется 38% тепла, падение напряжения составляет 12-17 В.
  2. Столб дуги. Имеет нейтральный заряд, поскольку положительные и отрицательные частицы присутствуют в равных количествах. Средняя длина – 5-10 мм. В этом участке выделяется 20% тепла, теряется 2-12 В.
  3. Анодное пятно. Бомбардируется электронами, что придает ему вогнутую форму (кратер). Протяженность этой зоны составляет 10 мкм. Выделяется 42% тепла, теряется 2-11 В.


Строение и свойства электрической сварочной дуги.

Приведенные данные характерны для сварки тугоплавким электродом.

Вред и борьба с ней

Физические параметры разряда могут нести угрозу как здоровью человека, так и оборудованию. Особенно высокий риск возникновения несут высоковольтные сети – длина такого разряда может достигать полутора метров.

Важно! Горение дуги сопровождается выделением огромного количества тепла. Средняя температура может достигать значения 2500-3000 Сº.

Но даже в быту, выдернув шнур питания мощного электрообогревателя, можно увидеть небольшую вспышку, которая образовалась в момент прерывания контакта.

В качестве средств защиты контактов применяют специальные дугогасительные камеры – корпус из диэлектрического материала с набором из нескольких проводящих перегородок. Они принимают на себя разряд, разделяя его на несколько частей, что способствует его охлаждению.

Строение вакуумного выключателя.

Эксплуатация высоковольтных сетей предусматривает использование различных типов выключателей:

  • масляный;
  • вакуумный;
  • газовый;

Гашение в коммутационной аппаратуре

Развитие коммутационной аппаратуры и разнообразие методов ее исполнения послужило толчком к изучению способов гашения дуги. Рассмотрим их подробнее.

Увеличением ее сопротивления

Метод заключается в последовательном увеличении сопротивлении, что способствует уменьшению силы тока. По достижению определенного предела ток будет не способен поддерживать разряд, после чего он погаснет.

Основной недостаток – длительное время гашения, который сопровождается тепло- и энергопотерями.

Методом нулевого тока

Выключатели современнго оборудования, работающие на переменном токе, сконструированы для применения данного метода. Согласно законам физики, ток проходит через ноль в конце каждого полупериода. При переходе происходит кратковременное тушение дуги. Вместе с тем, площадь между контактами насыщена заряженным элементами, которые понижают диэлектрические свойства газа.

Суть метода заключается в резком увеличении диэлектрических свойств газа, путем деионизации среды.

Способы деионизации среды между контактами

Деионизация – одна из основных причин прекращения разряда. Существует несколько способов активации данного процесса:

  1. Увеличение зазора между контактами.
  2. Повышение давления частиц в контактной среде.
  3. Охлаждение контактной среды.
  4. Эффект взрывной волны.

В выключателях последнего типа в качестве средства тушения используют шестифтористую серу, которая под большим давлением воздействует на пространство между контактами. В результате образуются малоподвижные ионы, которые не способные поддерживать горение дуги.

Как образуется электрическая дуга

Сварочная дуга является ничем иным, как электрическим разрядом. Возникает она в случае замыкания цепи. В тот момент, когда электрод прикасается к поверхности свариваемого металла, начинает вырабатываться тепловая энергия в большом количестве. В точке соприкосновения металл начинает плавиться. Расплав притягивается к окончанию расходника, образуя тонкую шейку. Она почти что мгновенно распыляется под влиянием сильного электрического поля. В это время молекулы газа ионизируются, образуется защитное облако и обеспечивается свободное перемещение электродов.

Вид тока определяет направленность потока. Поджечь дугу можно на токе прямой и обратной полярности, переменном или постоянном. Частота, с какой дуга гаснет и разжигается напрямую зависит от выбранных сварщиком параметров тока.




Источники

  • https://svarkaspec.ru/svarka/teoriya/svarochnaya-duga.html
  • https://printeka.ru/svarochnye-apparaty/svarochnaya-duga-i-ee-svojstva.html
  • https://TechnoRama.ru/raboty/stroenie-svarochnoj-dugi.html
  • https://MetalloBaza-sm.ru/obrabotka-metallov/chto-predstavlyaet-soboj-svarochnaya-duga.html
  • https://ToolProkat43.ru/bytovaya-tehnika/usloviya-vozniknoveniya-elektricheskoj-dugi.html
  • https://weldering.com/elektricheskaya-duga
  • https://tutsvarka.ru/vidy/svarochnaya-duga-chto-eto-temperatura-i-stroenie-osobennosti-i-harakteristiki
  • https://svarkaved.ru/o-svarke/informatsiya-o-svarochnoj-duge-i-o-tom-kak-ona-rabotaet
  • https://math-nttt.ru/novosti/usloviya-goreniya-dugi.html
  • https://kamuflyzh.ru/svarka/chto-nazyvaetsya-svarochnoj-dugoj.html
  • https://LesSale.ru/glavnoe/kakie-zony-razlichayut-pri-gorenii-dugi.html
  • https://svarkaprosto.ru/tehnologii/svarochnaya-duga
  • https://svet-komfort.ru/ustrojstva/shema-dugi.html
  • https://dosaafvlg-kotovo.ru/stanki-drugoe/svarochnaya-duga-predstavlyaet-soboj.html
  • https://sakhkor.ru/svarka/napryazhenie-svarochnoj-dugi.html

[свернуть]

Ссылка на основную публикацию