Газовые смеси для сварки полуавтоматом: аргон, углекислота, гелий и другие, их свойства и расход

Содержание

Какие газовые смеси используются для сварки полуавтоматом

Полуавтоматом чаще всего работают:

  • со стальными сплавами, чугуном ;
  • с легированными сталями – нержавейка, разные виды жаропрочных;
  • с цветными металлами – алюминием, медьсодержащими: латунь, бронза.

Работа с другими материалами затруднена тем, что нет соответствующей присадочной проволоки, поставляемой в стандартных катушках. Создают смеси в соответствии с ТУ 2114-002-45905715-2011.

В качестве составных газов применяют:

  • аргон – ГОСТ 10157-79 (высшие сорта);
  • азот – ГОСТ 9293-74 (особой чистоты 1 сорта);
  • двуокись углерода – ГОСТ 8050-85 (высшие сорта);
  • кислород – ГОСТ 5583-78 (технический, первые сорта);
  • гелий – ТУ 0271-135-31323949- 2005 (марка “А”);
  • водород – ГОСТ Р 51673-2000 (первые сорта).

Допускается использование готовых смесей, однако, содержание компонентов в полученной смеси должно соответствовать техническим регламентам.

Плюсы и минусы

Использование сварочных полуавтоматов позволяет исключить ржавение шва. В идеале используют смесь 98%-го аргона с 2% углекислого газа. Но для рядового сварщика, выполняющего не слишком ответственную работу, по соображениям экономии лучше использовать пропорцию 70/30. Подача проволоки в сварочный участок без участия человека высвобождает много времени и сил, повышает производительность труда. Современные полуавтоматы обеспечивают охлаждение горелки.

С их помощью можно варить металл даже в труднодоступном месте. Разжечь дугу окажется заметно проще. Работать с полуавтоматической техникой как минимум не труднее, чем с традиционными ручными устройствами. Она вполне доступна еще начинающим сварщикам. Полуавтоматы обеспечат еще и удобную настройку параметров работы.


Однако надо помнить, что даже полуавтоматы последнего поколения весьма дороги. Серьезной проблемой будет также недостаточная мобильность подобных устройств. Что касается жалоб на пористый шов, то они в основном связаны с ошибками самих сварщиков. Те попросту упускают из виду правильные пропорции при смешивании газа. Также причиной могут быть неполадки оборудования; критиковать сами полуавтоматы смысла не имеет.

Также подобный тип аппаратов отличается:

  • визуальной наглядностью процесса;

  • возможностью наблюдать за созданием шва;

  • высвобождением пространства;

  • возможностью соединять тонкие детали;

  • сбережением времени;

  • отсутствием необходимости часто менять электроды, зачищать швы.


Критерии выбора газа или смеси для полуавтомата

При выборе смеси или технически однородной среды принято обращать внимание на следующие критерии: тип конструкционного материала свариваемых заготовок, толщину формируемого шва, диаметр проволоки.

В итоге выбор смеси для сварочных работ сводится к изучению таблицы, в которой указаны составы, рекомендуемые для каждого металла или сплава, с учетом глубины ванны и других характеристик.

Кроме того, опытный сварщик учитывает «бонусный» эффект, который дает та или иная среда. Например, углекислые газы обеспечивают минимальное разбрызгивание присадочного металла (электрода), поэтому с их помощью удобно варить потолочные швы. В этом случае СО2 убережет сварщика от контакта с каплями расплавленного металла.

Выбор сварочного аппарата

Разновидности

Работать в инертном газе могут как инверторные, так и трансформаторные устройства. Первый тип отличается повышенной надежностью. Инверторная схема позволяет обеспечить повышенную устойчивость к нагрузкам. Проблема в том, что такие устройства не могут выдать высокий КПД. Зато они создают много помех для другой электротехники.

Сварочный инвертор многократно легче своего трансформаторного собрата. Используя его, можно не опасаться появления помех. Такое устройство можно точно и адекватно настроить. Оно поможет стабилизировать сварочный ток без лишних проблем. Проблемой может стать высокая чувствительность к конденсату, однако это не слишком существенно при осторожном обращении.

Стоит учитывать еще такое деление:

  • бытовые аппараты (в них сварочный ток не выше 200 А, что вполне достаточно для домашнего ремонта);

  • полупрофессиональный класс (от 200 до 300 А) – подходит для систематического простого ремонта;

  • оборудование для работы специалистов (300 А и более) – может справиться с многочасовой повседневной работой, даже при очень сложных условиях.



Обзор брендов

Востребованностью пользуется техника аргонно-дуговой сварки два в одном марки «Сварог». Хорошим примером является модель PRO MIG 200 SYNERGY. Такой полуавтомат сможет использовать все типы проволоки. Полярность меняется двумя простыми движениями. Есть режим использования штучных электродов.

При использовании аргоновой горелки можно воспользоваться функцией розжига прикосновением. Координация горящей дуги выстроена очень четко. Можно отрегулировать сварочный ток и напряжение, темп подачи проволоки. Пользователи смогут вести аргонодуговую сварку в двухтактном либо четырехтактном формате. В наиболее сложном режиме используется автоматическая опция VRD, уменьшающая риск удара током.


AuroraPRO Speedway 200 может оказаться не хуже. Этот полуавтомат изначально конструировали для серьезных работ. Его создавали для использования массивных катушек. Что немаловажно, эта модель способна действовать в однофазном режиме. Она выдержит уменьшение сетевого напряжения до 140 В.

Изделие оптимально подходит для автосервисов и других небольших предприятий. Гарантируется почти беспрерывная работа с проволокой диаметром 0,8 и 1 мм. Менее долгая работа возможна с проволокой сечением 1,2 мм. Предусмотрена адаптивная настройка индуктивности. Минусом можно считать разве что очень большой размер.


Сварог ARCTIC MIG 250 Y куда компактнее, однако отрицательной стороной будет повышенная цена. Такой полуавтомат подойдет для тонкостенных деталей. Наибольший ток достигает 250 А, если ПВ — 60%. На холостом ходу при 50 В розжиг происходит беспрепятственно даже на засоренных поверхностях. Конструкторы позаботились о способности работать долго, что выражается в использовании редуктора с подогревом.


Стоит отметить:

  • сравнительную экономичность;

  • повышенный коэффициент мощности;

  • малые размеры и массу;

  • невозможность работы со штучными электродами и перемены полярности;

  • отсутствие режима работы с флюсованной проволокой;

  • излишняя простота механизма подачи, не дающая достигнуть должной эффективности.


Fubag INMIG 200 Plus отличается многофункциональностью и пригодностью в профессиональной сфере. Конструкторы предусмотрели не только популярное «синергетическое управление», но и программное задание режимов поступления проволоки. Можно варить короткими швами по схеме SPOT. Такое решение отлично подойдет для сварки изделий, не нуждающихся в герметичном шве. Хороший пример — кузовной ремонт.


Если характеризовать бренды в целом, то Fubag отличается широтой ассортимента и разнообразием вспомогательных аксессуаров. Технологические параметры неплохи. Стоимость тоже умеренна. Российская фирма «Сварог» создает свое оборудование в тесном взаимодействии с продвинутыми китайскими разработчиками. Ее продукция оперативно обслуживается благодаря широкой дилерской сети.

Также стоит отметить:

  • популярную латвийскую «Ресанту»;

  • российскую компанию ELITECH;

  • российскую же фирму Aurora.


Можно ли самостоятельно смешивать газы?

Технически это возможно, для этого необходимо установить расходомеры-ротаметры на баллонах и по ним отрегулировать редуктором для полуавтомата подачу каждого газа в соответствии с требуемой пропорцией. На каждый литр основного газа будет расходоваться пропорциональная доля дополнительного.
На практике состав получаемой смеси будет нестабильным ввиду недостаточной точности расходомеров и неравномерного снижения давления в разных баллонах по мере расходования газа. Кроме того, сварочный редуктор будет периодически влиять на состав смеси. Какой еще способ применяется?

Надежный метод получения защитного сварочного газа

При работе с ответственными соединениями лучше применять готовые сварочные смеси в баллонах. Они готовятся на заводе по производству промышленных газов в специальных смесителях и равномерно перемешиваются.

Заправка газовых баллонов для сварки на таких предприятиях проводится с точным контролем количества и состава смеси. В этом случае состав смеси точен по пропорциям и постоянен во времени, в отличие от метода смешивания газов на рабочем месте с помощью редуктора для сварочной смеси. Состав смесей нормируется соответствующим ГОСТ и стабилен от партии к партии.

Состав и области применения

Существует много видов газовых составов для MIG-MAG сварки. Наибольшее распространение получили смеси аргона и углекислого газа. Они широко используются как для работы с низкоуглеродистыми сталями, так и для высоколегированных (нержавеющих, жаропрочных и пр.) сортов стали.

Читайте также:  Расплавить серебро: Как простыми методами это сделать в домашних условиях

Менее распространены смеси с добавлением кислорода, которые лучше работают при наличии ржавчины или загрязнений поверхности, но отличаются большим угаром металла и выделениями дыма.Кроме того, они не применимы для высоколегированных сортов стали.

Выбор режимов работы для MIG-MAG сварке позволяет обеспечить разные виды переноса расплавленного металла сварочной проволоки. Различают капельный перенос, когда расплавленный металл переходит вванну, вызывая образование брызг и неровностей сварного шва. При форсированных режимах MIG-MAG возможно образование струйного переноса расплавленного металла. При этом практически отсутствует разбрызгивание.

Наиболее популярные составы для сварки полуавтоматом (MIG-MAG):

  • 98%Ar+2%CO2 — для высоколегированных (нержавеющих) сталей + на обычном полуавтомате оцинкованных деталей и сварки-пайки (MAG brazing) соединений медь-железо
  • 92%Ar+8%CO2 — для тонких изделий из конструкционных сталей (1-5мм) + для скоростной сварки (линейная скорость до 2 м/мин на автомате или роботе) + для импульсной
  • 80%Ar+20%CO2 — для наплавки обычных и высокопрочных конструкционных сталей + для полуавтоматической сварки высоколегированной (нержавеющей) стали с порошковой проволокой
  • 75%Ar+ 25%CO2 — для магистральных трубопроводов и изделий из конструкционных сталей, где много вертикальных швов.
  • В некоторых случаях применяются также другие составы

  • 82%Ar+ 18%CO2 — для наплавки обычных и высокопрочных конструкционных сталей в аппаратах с прошивкой настроек на такую смесь;
  • 92%Ar+2%О2+ 6%СО2 — аналог (98%Ar+2%СО2);
  • 86%Ar+12%СО2+2%О2 — аналог (92%Ar+8%СО2);
  • 85%Не+13%Ar+1,5%СО2 — для высоколегированных сталей большой толщиныi>

Что лучше: сварочная смесь или углекислота?

Чем лучше варить, специалисты решают самостоятельно, учитывая прочность соединений, затраты на расходные материалы. Для изоляции расплава, образуемого в процессе сварки, можно использовать инертные газы аргон и гелий, углекислоту или сварочную смесь. С введением инертных газов, которые не взаимодействуют с расплавом, в активные, снижается способность углерода растворяться в жидком металле. СО2 – активный газ, при использовании в чистом виде он насыщает стали и цветные металлы.

Преимущества применения газосмеси:

  • облегчается струйный перенос электродной наплавки;
  • швы получаются более пластичные;
  • снижается риск образования пористости;
  • ускоряется процесс расплавления металла;
  • увеличивается прочность соединений;
  • меньше дымление, выделяемые вещества удерживаются в зоне расплава;
  • при неравномерной подаче присадочной проволоки сохраняется ритмичность работы;
  • из-за минимизации разбрызгивания снижается расход электродов и проволоки.

Достоинства сварки в атмосфере углекислого газа:

  • низкая стоимость;
  • возможность варить в любом пространственном положении;
  • хорошая проварка стыков.

Производительность сварочных работ при использовании специальных смесей, защищающих ванну расплава от окисления, повышается на 50%, при этом потребление электроэнергии не увеличивается.

Составы

В сварном деле используется много смесей газов в разных сочетаниях и пропорциях. Наиболее популярными являются следующие сварочные газовые смеси:

Аргон и углекислый газ

Смесь нашла свое применение при работе с низкоуглеродистыми сплавами. Она позволяет снизить образование пор в шовном материале, повышая таким образом его плотность и прочность. Кроме того, снижается расход сварочных материалов ввиду меньшего разбрызгивания расплава.
Если довести долю углекислого газа до 20%, то в такой смеси можно успешно варить заготовки большой толщины, невзирая на загрязнения на их поверхности.

Аргон в сочетании с кислородом

Этот состав используется при сварке высоколегированных и кислотоустойчивых сплавов способами MAG и TIG. Он стабилизирует горение электродуги, увеличивает глубину проплава и способствует образованию гладкой поверхности шва.

Углекислота и кислород

Состав используется для сваривания конструкционных низколегированных сплавов с низким содержанием углерода. Доля кислорода достигает 20-40%. Углекислота защищает сварную зону. Кислород нейтрализует негативное влияние водорода, способствует росту глубины проплава и предотвращает прилипание к заготовкам брызг расплава. С другой стороны, кислород снижает коррозионную стойкость шва.

Разновидности

Ниже мы перечислили все основные газы применяемые при работе с металлами. Вы узнаете все основные характеристики каждого из типов.

Аргон — самый популярный газ из всех. Он настолько популярен, что в честь него названа одна из технологий сварки — аргонодуговая. Аргон относится к благородным (инертным) газам, а это значит, он не имеет ни цвета, ни запаха. Также аргон химически неактивен по отношению к другим веществам и металлам. Аргон намного тяжелее воздуха, поэтому отлично защищает сварочную зону от окисления.

Гелий — второй по популярности газ после аргона. Он такой же инертный, но легче, чем воздух. Поэтому для полноценной защиты сварочной зоны нужно использовать довольно много газа. А это большой недостаток, ведь гелий стоит существенно больше аргона. Несмотря на это, сварочный газ гелий широко применяется. Особенно, при работе с металлами, покрытыми окисной пленкой (нержавеющая сталь, алюминий и т.д.).Благодаря гелию можно равномерно проплавить металл, так что этот газ без проблем поможет сварить металлы большой толщины.

Для работы с химически активными металлами можно использовать газовые смеси для сварки из аргона и гелия. Пропорция может быть разной, но наиболее популярная — 60% гелия и 40% аргона. Такая смесь будет стоить существенно дороже, но она позволит быстро и качественно сварить металлы с высокой теплопроводностью и избежать образования прожогов.

Углекислый газ или просто углекислота также широко применяется в сварочных работах. Это бесцветный газ, который как и аргон тяжелее воздуха, поэтому обеспечивается хорошая защита сварочной зоны. Рекомендуется варить углекислотой первой категории, но такой газ трудно найти и стоит он недешево. Поэтому на замену ему используют углекислоту второй категории. У газа второй категории в составе могут содержаться водяные пары, которые способствуют образованию пор при сварке. Эту проблему поможет решить сварка в смеси аргона и углекислого защитного газа вместо применения чистой углекислоты.

смесь газов

Далее кислород. В чистом виде кислород негативно влияет на качество шва, способствуя его окисления. Поэтому данный газ применяют только как добавку к смеси из аргона или углекислоты. Сварочные смеси газов используются редко, поскольку предназначены только для определенных задач. Кислород для сварки позволяет сформировать очень широкий шов с небольшой глубиной провара, что необходимо редко.

Водород. Он никак не пахнет и не имеет цвета, но при этом горюч. Поэтому с ним особенно необходимо соблюдать технику безопасности. Сфера применения так же узкая, можно применять водород только для плазменной резки нержавейки. При работе с другими металлами возможно образование дефектов. Например, горячих и холодных трещин. Но если резать нержавеющую сталь, то результат будет хорошим.

И последний газ в нашем списке — азот. Не имеет ни цвета, ни запаха. Не горит и горение никак не поддерживает. Бывает в нескольких состояниях, но чаще всего применяется жидкий и газообразный азот. Данный газ используется в особых случаях. Например, при сварке меди. В остальных случаях азот способствует снижению прочности готового шва.

Краткое описание газов, применяемых при создании смесей

Аргон – бесцветный газ без запаха и вкуса, негорюч и нетоксичен. Однако любая смесь Ar с иными газами может вытеснить кислород из помещения, что способно привести к удушью работников, если доля кислорода упадёт ниже 19% от общего объема. Аргон тяжелее воздушной смеси и способен скапливаться в плохо проветриваемых помещениях у пола.

Азот – газ бесцветный и негорючий. Без запаха и вкуса, нетоксичен. Однако скопление газообразной смеси азота может вызвать кислородную недостаточность и даже удушье при уменьшении концентрации кислорода менее 19% от объёма.

Углекислота – газ без цвета, не воспламеняется и нетоксичен, отличается специфическим кисловатым вкусом. Максимально допустимая концентрация соединения в воздухе рабочей зоны 9 г/м3 (что равно 0,5% объёма). Если концентрация становится больше 5%, то двуокись углерода может оказать вредное влияние на физическое состояние работников. Углекислота в полтора раза тяжелее воздушной смеси и способна скапливаться в непроветриваемых помещениях у пола, в ямах. При снижении концентрации кислорода в воздухе ниже 19% наступает кислородное голодание, удушье.

Гелий – бесцветный газ, не имеет вкуса и запаха, нетоксичен и негорюч, легче смеси воздуха, поэтому накапливается вверху цехов.

Кислород – бесцветный негорючий газ без запаха и вкуса, хотя сам не является токсичным и взрывоопасным, однако, будучи сильным окислителем, значительно повышает предрасположенность иных материалов к горению. Если кислород накапливается в воздухе цехов, это может стать причиной возникновения возгораний и впоследствии – пожаров. Важно, что объемная доля газа в рабочих (производственных) зонах не должна быть более 23%.

Аргон, углекислота и кислород

Углекислый газ (5-20%) и аргон (80-95%) используют для создания неразъёмных соединений из сталей: конструкционных легированных и углеродистых. Плюсы: перенос осуществляется струйно или капельно. Дуга при этом горит стабильно. Если применять смесь с добавлением кислорода (2%), уменьшив содержание углекислого газа до 6%, то сварщику будет легче справиться с тонкими сплавами.

Аргон и гелий

Сочетание гелия (70%) и аргона (30%) позволит работать с любыми толстыми сплавами:

  • сталью ;
  • чугуном;
  • цветными металлами.

При этом увеличится скорость сварки за счёт исключения операции по предварительному подогреву деталей. Количество дефектов – пористость швов, трещины – будет сведено к минимуму.

Минусом следует считать высокую стоимость таких смесей из-за высокого содержания редкого гелия. Поэтому используют подобные пропорции при сварке особо ответственных конструкций – при создании изделий для космоса или ВПК.

Аргон плюс гелий (по 50%) – смесь считается универсальной инертной. Благодаря этому, можно работать с большинством сплавов – как с цветными, так и чёрными. Состав из 70% аргона и 30% гелия по сравнению с чистым аргоном лучше охлаждает зону сварки, применяется для соединения деталей средней толщины, если нужно получение швов с минимумом дефектов. Смесь из 60% аргона, 38% гелия и 2% углекислоты используют для сварки легированных и конструкционных углеродистых сплавов. Дуга при этом получается стабильной, уменьшается количество брызг.

Читайте также:  Сварка латуни: особенности и рекомендации к обработке

Аргон и водород

Применяют на производстве при работе с аустенитными (жаропрочными) сплавами. Смесь позволяет улучшить характеристики полученного шва, добиться большей эластичности. Часто применяют при работе во время создания космической и авиатехники. Процент содержания химических элементов зависит от марки сталей.

Сложность орбитальной сварки и готовое решение для упрощения технологии

Орбитальная сварка используется для соединения труб и цилиндрических емкостей. Для них необходим высококачественный двусторонний провар, но полноценный доступ к изнаночной стороне шва затруднено.
В этом случае при малом диаметре заготовок их вращают перед сварочной горелкой, при большом диаметре или невозможности вращения на заготовки надевают специальную оснастку, по которой, как планета по орбите, движется сварочный автомат. При этой технологии часто используют подогрев заготовок.

Орбитальная сварка, как правило, проводится в чисто аргонной среде. Если же к соединению по техническим условиям предъявляются особые требования, как-то:

  • скорость сварки;
  • глубина проплава;
  • конфигурация изнаночной стороны шва.

В аргон добавляют гелий или водород. Для особо сложных случаев сварки создают смеси из нескольких компонентов, каждый из которых дает свой эффект.

Виды сварочных аппаратов

Основные — сварочный выпрямитель и сварочный инвертор. Первый прибор относится скорее к промышленному оборудованию и стоит в 2-4 раза дороже второго.

 Cварочный инвертор

Инвертор — источник образования и питания электродуги. Принцип действия основан на преобразовании характеристик электрического тока посредством трансформатора и электронного блока, построенного на силовых транзисторах.

Аппарат, собранный по схеме инвертора, отличается от других силовых источников:

  • меньшими габаритными размерами;
  • улучшенные динамические показатели электродуги;
  • повышение КПД;
  • снижение фактора разбрызгивания расплавленного металла;
  • возможность плавно менять параметры и режимы работы.

Инвертор способен производить сварку:

  • MMA — электродуговая сварка электродами с покрытием в ручном режиме. Осуществляется на постоянном (DC) или переменном (AC) токе.
  • MIG/MAG — сварочный процесс в облаке защитного газа с использованием специальной проволоки.
  • TIG — процесс соединения деталей посредством электродуги и неплавящимся электродом в среде инертных или активных газов. Режим постоянного тока используется для стыковки сталей, переменный — алюминия.

Особенности аргоновых и углекислотных соединений


Перед тем как определиться, какой газ использовать в смеси, надо рассмотреть особенности применения каждого их них.

Согласно ТУ 2114-001-99210100-09 все перечисленные выше составы могут формироваться в самых различных пропорциях, отличающихся процентным содержанием каждой из составляющих. В подавляющем большинстве таких пропорций аргон или кислород содержится в объёмах, составляющих основную массу вещества (от 88 до 98%). Дополняющие их добавки (углекислый газ, в частности) редко превышают в объёмном исчислении 5-15 %.

Аргон в пропорциональном соотношении с гелием чаще всего применяется с целью обработки цветных металлов и их производных. Основные типы заготовок, для обработки которых используется аргонодуговая сварка – это медные, алюминиевые, никелевые, а также хромоникелевые сплавы.

Сварочные смеси из сочетания аргона с углекислым газом нередко применяются с целью подогрева металла перед сваркой или постепенного его охлаждения по окончании работ. Как правило, такая процедура организуется в случаях крайней необходимости.

Этот газообразный состав достаточно взрывоопасен, так что работа в среде СО2 требует от оператора соблюдения мер безопасности при его подготовке и использовании.

Особого внимания требует процесс сваривания металлических заготовок в смесях с высоким содержанием углекислого газа. Дело в том, что при его соединении с кислородом воздуха образуется опасный для здоровья человека угарный газ, для защиты от которого оператор должен работать в специальной маске.

Таким образом, аргон и углекислота в сочетании с рядом активных добавок относятся к универсальным сварочным смесям газов, применяемым при работе с большинством марок чёрных и цветных металлов. Их сочетание наряду с высокой эффективностью использования отличается сравнительно низкой ценой.

Подбор сварочной смеси для полуавтомата

Присадочная проволока выпускается без защитного покрытия, в полуавтоматах предусмотрена подача защитных газов. Их смешивают с расчетом, чтобы создавалась нужная температура горения, при которой металлические заготовки и проволока не слишком быстро расплавлялись. При рациональном подборе газосмеси для полуавтоматической сварки упрощается процесс формирования швов.

Таблица выбора газосмеси для различных сплавов:

Углеродистые конструкционные стали (листовой, узкопрофильный прокат)
Размер проволоки (мм) Величина стыка (мм) Сила тока (А) влияет на скорость сварки Название смеси по ГОСТ и международному стандарту Компонентный состав смеси
Ar CO2 O2 He
0,8 1 от 45 до 65 К-3.1

(возможна маркировка Argoshield 5)

92% 6% 2%
1,6 от 70 до 80
1 3 от 120 до 160 К-3.2 (возможна маркировка Argoshield TC) 86% 12% 2%
6 от 140 до 160
1,2 6

10

от 250 до 270

от 140 до 160

1,2 10 от 270 до 310

от 140 до 160

К-2 (возможна маркировка Pureshield P31)

Универсальная смесь

82% 18%
1,2 10 от 290 до 330 К-3.3 возможна маркировка (Argoshield 20) 78% 20% 2%
Легированные стали (жаростойкие. жаропрочные, нержавеющие, кислотоустойчивые)
0,8 1.6 от 70 до 855 НП-1 (возможна маркировка Helishield HI) 13,5% 1,5% 85%
1,0 3

6

от 100 до 125

от 120 до 150

НП-2(возможна маркировка Helishield H7) 43% 2% 55%
1,2 6

10

от 220 до 250

от 120 до 150

1,2 10 от 120 до 150

от 260 до 280

от 270 до 310

НП-3 (возможна маркировка Helishield H101) 60% 2% 38,0%
Сплавы на базе алюминия
1 1,6 от 70 до 100 НП-1 (обозначается также H1 и надписью Helishield-Н1) 13,5% 1.5% 85%
1.2 3

6

от 105 до 120

от 120 до 140

1,2 6 от 160 до 200 НП-2 (обозначается также H7 и надписью

Helishield-H7)

43% 2% 55%
10 от 120 до 140
1,6
1,2-1,6 от 130 до 200
1,5-2,4 от 300 до 500 НП-3 (возможна маркировка Н101 и Helishield-H101) 60% 2% 38%

При использовании вольфрамового электрода и проволочной присадки применяют составы из двух инертных газов:

  • НН-1 (полное название Helishield-Н3), в этой смеси концентрация гелия в пределах 30%, аргона не более 70%. газосмесь обеспечивает более эффективный нагрев, увеличивается скорость плавления металла, формируется ровная поверхность шва.
  • НН-2 (международная маркировка Helishield-H5) – это в равных пропорциях смешанные два инертных газа: аргон и гелий. Универсальная смесь применяется для соединения черных и цветных заготовок практически любой толщины.

Компонентный и количественный состав оказывает влияние практически на все параметры и режим сварки металлов.

Характерные особенности метода

При нормальных условиях CO2 — это бесцветный газ без запаха и вкусовых ощущений. При небольших концентрациях безвреден, не ядовит, не взрывоопасен. Тяжелее воздуха, — плотность 1.98 кг/м³. Хорошо растворяется в воде.

 Углекислый газ в баллонах
Расфасовывается в баллоны 10, 20 или 40 литров. Газ в баллоне находится под давлением в жидком состоянии. Из 1 кг жидкой углекислоты получается около 505 литров газа. В промышленный 40-литровый баллон входит примерно 25 кг жидкого СО2.

Углекислый газ при высоких температурах оказывает окисляющее воздействие на металл ванны. Дополнительная реакция — науглероживание. Сильнее поддаются окислительным реакциям активные металлы: цирконий, титан, алюминий. Снизить воздействие помогает выбор определенного режима сварки.

Перед применением баллон с газом выдерживают в вертикальном положении — влага, содержащаяся в емкости, стекает на дно. Далее, углекислый газ через осушитель и редуктор направляется в зону сварки.

Функции редуктора с регулятором:

  • поддерживать заданное давление;
  • регулировать подаваемые объемы газа;
  • измерять расход газа в единицу времени.

Возможности редуктора характеризуются:

  • Предельный пропуск газа — определяет количество углекислоты, которую способен пропустить прибор в единицу времени.
  • Предельное давление — показывает верхнее значение рабочего давления, до которого возможно преобразование внутренних параметров баллона.

СОВЕТ. Перед покупкой баллона необходимо определить возможности и оказываемые услуги заправочных станций. Далеко не все оборудованы для наполнения баллонов емкостью 10 или 20 литров.

Пошаговый процесс сварки полуавтоматом в среде аргона

Пошаговый процесс сварки полуавтоматом в среде аргона

В первую очередь важно убедиться в готовности аппаратуры, а именно настроить режим работы полуавтомата, установить силу тока, напряжение, скорость подачи проволоки. Если при полуавтоматической сварке аргоном используется алюминиевая проволока, лучше выбрать подающий механизм тянущего типа. Тогда как толкающий больше подходит для стальной проволоки. При толщине материала изделия до 3 мм сила тока устанавливается в пределах 120–145 А, а скорость движения проволоки – 900 м/ч.

Читайте также:  Холодная сварка для металла - разновидности, помощь в выборе

Еще один важный нюанс – полярность. Чаще всего для такой работы используется постоянный ток с обратной полярностью. То есть на изделие подается «-», а на горелку с проволокой – «+».

В процессе подготовки необходимо очистить поверхности изделий. Кромки алюминиевых заготовок протирают ацетоном, после чего обрабатывают металлической щеткой. Это необходимо, чтобы избавиться от поверхностной пленки, осложняющей сварочные работы.

Когда все предварительные этапы выполнены, переключатель подачи проволоки приводится в рабочее положение, зажигается электрическая дуга. Если используется плавящаяся проволока, для этого достаточно прикоснуться к металлу. Лучше убедиться, что режим сварки выбран верно, не на изделии, а не любой другой заготовке. Только после этого можно переходить к сварке.

Сопло горелки должно двигаться в одном направлении, при этом стоит избегать поперечных движений. При обработке вертикальных изделий сопло перемещается сверху вниз. Наиболее рациональным считается сварка на высокой скорости с однослойным швом. Если ведется работа с металлом большой толщины, его подогревают до 150–300 °C.

От чего зависит расход газа при сварке

Установку силы обдува сварочной ванны следует устанавливать, учитывая:

  • тип материала – определяется опытным путём;
  • толщину заготовок – для работы с толстыми понадобится больше газа;
  • диаметр электрода (проволоки).

Также придётся принять во внимание условия в цехе или на площадке. При наличии сквозняков, открытого ветра следует либо защищать рабочее место ширмами, либо увеличивать расход газовой смеси.

Диаметр проволоки, мм Сила сварочного тока, А Средний расход, л/мин
0,8-1 60-160 7-8
1-1,2 100-250 9-12
1,2 250-320 12-15

Для уменьшения расхода газа во время работы следует тщательно проверять соединения шлангов, исправность редукторов, элементов горелки и сварочного полуавтомата.

Основные преимущества сварки с газовой защитой

  1. Узкая зона высокотемпературного воздействия, поэтому MIG-MAG процессы не меняют свойства свариваемых металлов.
  2. Отсутствие задымления в зоне сварочной ванны, что облегчает визуальный контроль качества шва.
  3. Универсальность применения — MIG-MAG процессы совместимы с любыми металлами: от титана или алюминия до высоколегированной или конструкционной стали.
  4. Отсутствие ограничений по пространственному положению детали — отрегулировав напор горелки, можно варить потолочные или наклонные швы, не испытывая никаких затруднений.
  5. Нет ограничений по толщине — эта технология допускает сваривание листовых заготовок с толщиной от 0,2-0,5 миллиметра. Верхняя граница толщины соединения определяется только мастерством сварщика.
  6. Отсутствие необходимости зачищать швы даже при многослойной наплавке — флюс улетучивается после прекращения подачи смеси из горелки.
  7. Максимально возможная производительность труда даже при средней квалификации сварщика.

Все эти преимущества станут доступны только в случае поставки качественной смеси, подготовленной по ГОСТ и ТУ. Некачественные составы приведут к потере прочностных характеристик.

Применяемые защитные газы

Для TIG-метода используются защитные газы:

  • Инертные. Самый применяемый — аргон (Ar) или гелий (He). Не оказывают химического влияния на обрабатываемые металлы.
  • Активные. Углекислый газ (CO2), азот (N2) или смеси газов: аргон-кислород, аргон-водород, аргон-азот, аргон-углекислота. Оказывают активное влияние на химический состав сварочной ванны.

Использование среды защитных газов позволило:

  • Визуально контролировать процесс образования шва — отсутствует препятствие в виде флюсового шлама.
  • Повысить производительность.
  • Уменьшить зону нагрева, снизить вероятность структурных преобразований кристаллической решетки металла.
  • Механизировать и автоматизировать процесс сварки.

Один из самых доступных и дешевых — углекислый газ.

Важные нюансы полуавтоматической сварки аргоном

Важные нюансы полуавтоматической сварки аргоном

Для сварки может использоваться чистый аргон или в сочетании с другими защитными газами. Его основная особенность состоит в инертности, из-за чего не происходит реакции с металлом изделия. При этом аргон не позволяет протекать окислительным процессам на сварном шве, что наиболее важно в случае работы с цветными металлами. Дело в том, что последние очень быстро окисляются, контактируя с воздухом, а именно с содержащимися в нем кислородом и азотом. Аргон вытесняет из сварочной зоны все остальные газы, за счет чего получается более прочный шов, удается избежать высокой пористости свариваемого металла.

Полуавтоматическая сварка в среде аргона имеет ряд особенностей, отличающих данную технологию от остальных. Нужно понимать, что этот газ может применяться в сочетании с плавящимися (проволокой) и с неплавящимися электродами. В процессе работы сварщику необязательно обрабатывать поверхность заготовки от окислов, особенно если речь идет о соединении алюминиевых деталей. Сварка последних осуществляется при помощи алюминиевой проволоки диаметром в пределах 1-2 мм. При этом скорость подачи проволоки составляет 150–650 м/ч, а сила тока не может превышать 300 А.

Сварка предполагает достаточно большой расход аргона. В полный баллон входит примерно 6 000 л, а расход газа при сварке полуавтоматом составляет от 300 л/ч. Сварщик подбирает оптимальный режим работы оборудования на основании инструкции к полуавтомату. Сила тока и скорость подачи проволоки устанавливаются в соответствии с толщиной металлического изделия.

Использование полуавтомата при работе с нержавеющей сталью

Использование полуавтомата при работе с нержавеющей сталью

При помощи различных способов сварки нержавеющей стали получаются швы, отличающиеся по качеству. Если речь идет об обработке в безгазовой среде, используется порошковая проволока. В результате формируется ровный, красивый шов. Правда, нужно быть готовым к тому, что со временем на нем могут появиться очаги коррозии.

Чтобы избежать этого, сварщики используют полуавтомат со стальной проволокой и углекислотой. Газ должен включать 2 % углекислоты и 98 % аргона. Либо для удешевления работ допускается использовать пропорцию 30 % на 70 %, где большая часть также приходится на аргон.

В процессе полуавтоматической сварки аргоном присадочная проволока подается механически. Немаловажно, что при использовании такой техники происходит охлаждение горелки, за счет чего повышается качество соединения. Кроме того, удается изменять скорость подачи проволоки и накладывать швы даже в труднодоступных местах.

До начала сварки необходимо подготовить соединяемые детали:

  • Зачистить поверхность металлической щеткой, обезжирить уайт-спиритом, ацетоном либо авиационным бензином.
  • Прогреть детали до +100 °C – таким образом сварочная зона просушивается от влаги.

Благодаря полуавтоматической сварке аргоном свойства стали остаются неизменными, что является большим плюсом технологии. Стоит отметить, в процессе работы проволока из никелевого сплава сгорает интенсивнее, а это положительно отражается на качестве шва.

Алюминий — раскрываем секреты метода

Широко применяемый в аэрокосмической и приборостроительной отрасли алюминий имеет неприятное для сварки свойство: поверхность легкоплавкого (660оС) металла всегда покрыта тугоплавким (более 2200оС) окисным слоем, который не дает нормально сваривать детали.
После удаления этого слоя механическим или химическим методом он самопроизвольно восстанавливается, поскольку алюминий охотно окисляется кислородом, содержащимся в окружающем нас воздухе. Процесс многократно ускоряется при нагреве алюминия до температуры плавления.

Поэтому при сварке алюминиевых деталей необходимо надежно защитить рабочую зону от контакта с воздухом.

Наиболее широко в качестве сварочной смеси для сварки полуавтоматом применяется аргон. Используются также смеси с гелием для сварки полуавтоматом. Он защищает расплав от негативного воздействия кислорода, азота и водяных паров. Сварка ведется по технологии TIG или MIG, с использованием алюминиевой проволоки или прутка в качестве присадочного материала.

Смеси для работ плавящимся электродом или проволокой

Обработка металлов и сплавов с помощью плавящейся проволоки или электродов широко распространена. Для защиты компонентов и получения более ровного и качественного шва рекомендуется сварка в среде защитных газов.

На сегодняшний день разработаны и применяются следующие составы:

  • Pureshield P31, известная под абревиатурой К-2 – универсальный состав, включающий в себя аргон и СО2, подходит для всех типов металла;
  • Argoshield 5 или К-3.1 – помимо аргона и СО2 включает в себя кислород, предназначена для глубокой обработки сортовых сталей;
  • Argoshield TC – К-3.2, содержащая больший процент углекислого газа и меньший аргона, подходит для автоматической и ручной сварки;
  • Helishield HI – НП-1, предназначена для сварки, где важно отсутствие искривления металла в области шва, на основе гелия, аргона и кислорода;
  • Helishield H7 – НП-2, с меньшим содержанием гелия, низким уровнем армирования во время сварки, подходит для разной толщины соединяемых деталей;
  • Helishield H101 применяется для обработки массивных деталей, с толщиной шва свыше 9 мм, маркируется как НП-3.

Выбор подходящего состава должен осуществляться с учетом технических условий на обработку тех или иных металлов и сплавов. При отсутствии подобного рода документации обращайтесь за получением информации к специалистам.

Источники

  • https://elsvarkin.ru/materialy/gazovye-smesi/
  • https://stroy-podskazka.ru/svarka/poluavtomatom-v-srede-argona/
  • https://itc-pex.ru/info/articles/gaz-dlya-svarki-poluavtomatom/
  • https://paes250.ru/svarka/argon-kislorod-2.html
  • https://svarkaprosto.ru/materialy/svarochnaya-smes
  • https://svarkaed.ru/rashodnye-materialy/vsyo-chto-vam-nuzhno-znat-pro-svarochnyj-gaz.html
  • https://WikiMetall.ru/metalloobrabotka/svarka-tig-uglekislota.html
  • https://svaring.com/welding/prinadlezhnosti/svarochnye-smesi-gazov
  • https://vt-metall.ru/articles/568-poluavtomaticheskaya-svarka-argonom

[свернуть]
Ссылка на основную публикацию